
Chapter Two
The transcendence of e and π.

The fantasy calculation at the end of the last lecture, a fantasy because the
linear combination of the intermediate series In did not vanish (it is a positive
rational number), does give us a goal to pursue: find a series representation for
ez that provides better-than-expected approximations to particular values of ez.
And the hope that it might be possible to manipulate the power series for ez so
that when it is divided into a main term, intermediate term, and tail, a linear
combination of the intermediate terms vanishes, can be realized. We just need
to rethink what we expect of an approximating main term for such a series.

One way to think about the failure of the simple truncation of the power
series for ez idea to establish the transcendence of e is that we are expecting
too much of the series–we are hoping that the truncated series, which leads to
the main term which is a polynomial approximation to ez, will lead to very
good approximations for all values en. But we only need good approximations
for a few values, rather than all values, and we want that approximation to be
a very good one. To accomplish this we do not need the intermediate sum to
vanish for all values of z but only for those values for which we wish to have
good approximations to ez. This puts us, and Hermite and others, on a new
quest: find a polynomial that offers very good approximations of the values
under consideration but not particularly good approximations to other values.
In particular, we want to find a polynomial that provides a good approximation
to ez at a point z = a, but is not necessarily any better than the previous
truncation attempt for other values of z. And, in the proof of the transcendence
of e we find approximations for each of the powers of e that appears in the
assumed nontrivial integral, algebraic equation

r0 + r1e+ r2e
2 + · · ·+ rde

d = 0, rd 6= 0.

Perhaps surprisingly, this can be accomplished by taking an appropriate integer
multiple of the function ez, which we will see is best thought of as a linear
combination of exponential functions. The idea is to take integral combinations
of ez so that the appropriately chosen intermediate term vanishes at each of the
values z = 0, 1, . . . , d.

If we want the intermediate sum to vanish at the values z = 0, 1, . . . , d,
the obvious thing to try is to manipulate the power series for ez so that the
intermediate sum is divisible by each of the polynomials z, z−1, z−2, . . . , z−d.
Having the intermediate sum divisible by the product z(z− 1)(z− 2) · · · (z− d)
does not suffice, for reasons we will point out later. The source of the correct
integer coefficients is the polynomial:

P (z) = zp−1(z − 1)p · · · (z − d)p. (1)

The exponent p will be taken to be a sufficiently large prime number in the
proof. For now we just point out that P (z) has a zero of order p−1 at z = 0 and
of order p at each of z = 1, . . . , d; the higher order of vanishing at z = 1, . . . , d,
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together with the requirement that p be a prime number, will play a role in
showing that the small integer we obtain is nonzero.

The point of the above discussion is that we have not only the single poly-
nomial P (z) that vanishes at each of the points z = 0, 1, . . . , d but so do each
of the polynomials P (n)(z) for 1 ≤ n ≤ p − 1. The reason these derivatives are
important is because they introduce factorials into our proof, and we saw in our
fantasy calculations in the previous chapter that factorials could play a major
role.

If we rewrite the polynomial P (z) as

P (z) = cp−1z
p−1 + cpz

p + · · ·+ c(d+1)p−1z
(d+1)p−1, (2)

and then sum P s first through (p− 1)st derivatives, we obtain the sum:

p−1∑
n=1

P (n)(z) =

(d+1)p−1∑
N=p−1

N !cN

N−1∑
n=N−p+1

zn

n!

 . (3)

Notice that the right-hand side of this expression equals a sum of terms of the
form N !cN times a portion of the power series for ez, where the index of the sum,
N, runs from p− 1 to (d+ 1)p− 1. This means that we have uncovered a linear
combination of the series representation of ez that has the desired vanishing
intermediate sum:

(d+1)p−1∑
N=p−1

N !cNe
z =

(d+1)p−1∑
N=p−1

(
N !cN

N−p∑
n=0

zn

n!

)
︸ ︷︷ ︸

main term (Mp(z))

+

(d+1)p−1∑
N=p−1

N !cN

N−1∑
n=N−p+1

zn

n!


︸ ︷︷ ︸

intermediate term (Ip(z))

+

(d+1)p−1∑
N=p−1

(
N !cN

∞∑
n=N

zn

n!

)
︸ ︷︷ ︸

tail (Tp(z))

,

provided that we use the convention that an empty sum equals 0 (this occurs in
the main term when N = p− 1). As this last point is so important to the proof
of the transcendence of e we offer below we make explicit the main terms as:

Mp(z) =

(d+1)p−1∑
N=p

(
N !cN

N−p∑
n=0

zn

n!

)
.

By construction we know that the intermediate term vanishes for t = 1, 2, . . . , d;
so for each of these values we have

et
(d+1)p−1∑
N=p−1

N !cN = Mp(t) + Tp(t).

On the other hand, when t = 0 the intermediate term does not vanish, since the
polynomial P (z) only has order of vanishing p − 1 at t = 0. However the tail
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series clearly vanishes at t = 0 so, for t = 0, we have the representation:

e0
(d+1)p−1∑
N=p−1

N !cN = Mp(0) + I(0) .

The above representations for et when t = 0, 1, . . . , d are the technical tools we
need to establish the transcendence of e.

Theorem. The number e is transcendental.

Proof. We begin by again assuming that e is algebraic and so there exist
integers r0, r1, . . . , rd, rd 6= 0, such that

r0 + r1e+ r2e
2 + · · ·+ rde

d = 0 . (4)

Step 1. When we multiply the equation r0 + r1e + r2e
2 + · · · + rde

d = 0 by
N !cN and sum from N = p− 1 to (d+ 1)p− 1 we obtain

r0

(d+1)p−1∑
N=p−1

N !cN + r1e
1

(d+1)p−1∑
N=p−1

N !cN + · · ·+ rde
d

(d+1)p−1∑
N=p−1

N !cN = 0 (5)

We recall the representations from above:

et
(d+1)p−1∑
N=p−1

N !cN = Mp(t) + Tp(t), for 1 ≤ t ≤ d,

and, e0
(d+1)p−1∑
N=p−1

N !cN = Mp(0) + Ip(0). (6)

We substitute these relationships into the presumed vanishing algebraic rela-
tionship (4), and rearranging, we have a familiar expression:

r0
(
Mp(0)+Ip(0)

)
+r1Mp(1)+r2Mp(2)+· · ·+rdMp(d) = −r1Tp(1)−r2Tp(2)−· · ·−rdTp(d) ,

and therefore∣∣r0(Mp(0) + Ip(0)
)

+ r1Mp(1) + r2Mp(2) + · · ·+ rdMp(d)
∣∣

≤
∣∣r1∣∣∣∣Tp(1)

∣∣+
∣∣r2∣∣∣∣Tp(2)

∣∣+ · · ·+
∣∣rd∣∣∣∣Tp(d)

∣∣ , (7)

Step 2. In Step 3 we will show that the expression on the left-hand side
of the above equation is a nonzero integer, and, moreover, that it is divisible
by the relatively large integer (p − 1)!. This is the amazing part of the proof.
Before getting there we complete one of the more mundane parts of the proof, we
provide an upper bound for the right-hand side of (8). Our estimate will, after
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we complete Step 3, show that (8) is an equality between a nonzero, positive
integer and a number less than 1.

We begin our estimate for the absolute value of the right-hand side of (8) by
estimating each of the terms |Tp(t)|. For t = 1, 2, . . . , d,

Tp(t) =

(d+1)p−1∑
N=p−1

(
N !cN

∞∑
n=N

tn

n!

)
;

the simple change of variables k = n−N, and the observation that (k+N)!
k!N ! ≥ 1,

yields,

N !

∞∑
n=N

tn

n!
=

∞∑
k=0

N !

(k +N)!
tk+N ≤ tN

∞∑
k=0

tk

k!
= tNet,

It follows from the triangle inequality that

|Tp(t)| ≤ ett(d+1)p−1
(d+1)p−1∑
N=p−1

|cN | .

We next provide an upper bound for the sum

(d+1)p−1∑
N=p−1

|cN |. To do this we

first recall that zp−1(z − 1)p(z − 2)p · · · (z − d)p =
∑(d+1)p−1
N=p−1 cNz

N . So the∑(d+1)p−1
N=p−1 |cN | may be bounded by a product of d terms each of which is a

bound for the sum of the absolute values of the coefficients of the term (z− t)p,
for t = 1, . . . , d. Since (z − t)p =

∑p
n=0

(
p
n

)
(−t)p−nzn, the sum of the absolute

values of its coefficients is bounded by

p∑
n=0

∣∣∣∣(pn
)

(−t)p−n
∣∣∣∣ ≤ tp p∑

n=0

(
p

n

)
= (2t)p .

It follows that
(d+1)p−1∑
n=p−1

|cN | ≤
d∏
t=1

(2t)p ≤
(
(2d)d

)p
. (8)

Since 1 ≤ t ≤ d we have

|Tp(t)| ≤ edd(d+2)p−1(2d)dp = c1 (c2)p

where the constants c1 and c2 are defined by c1 = ed/d and c2 = d2
(
2d2
)d

depend only on e and its presumed algebraic degree which is at most d.
Thus we have established the following upper bound

∣∣r0(Mp(0) + Ip(0)
)

+ r1Mp(1) + r2Mp(2) + · · ·+ rdMp(d)
∣∣ ≤ c1( d∑

t=1

|rt|

)
(c2)p .

(9)
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Notice that we still have work to do because letting p → ∞ the upper bound
on the right-hand side of the above inequality (9) is unbounded. It will follow
from what we called the amazing part of the proof, which we carry out in the
next step, that it is possible to introduce a (p− 1)! into the denominator of the
right-hand side of (9), and still have an integer on the inequality’s left-hand side.
This will allow us to obtain a contradiction as p → ∞ and therefore conclude
the e cannot be algebraic.

Step 3. We now come to the amazing part of the proof we have discussed: we
establish that the integer in the left-hand side of (9) is nonzero and is divisible
by p− 1. Specifically we see that for all sufficiently large prime numbers p,

r0
(p− 1)!

Ip(0) +

d∑
t=0

rt
(p− 1)!

Mp(t)

is a nonzero integer.
We establish the above claim in two steps–we first show that the displayed

value is an integer, which amounts to showing that (p − 1)! divides each term,
and we then show that this integer is nonzero, by showing that it is not divisible
by p. It will be handy for each of these demonstrations to have the expression
for Mp(t) in view so we recall it here:

Mp(t) =

(d+1)p−1∑
N=p

(
N !cN

N−p∑
n=0

tn

n!

)
=

(d+1)p−1∑
N=p

(
cN

N−p∑
n=0

N !

n!
tn

)

To establish the first part of the claim we begin by observing that N ≥ p

and n ≤ (N − p). The ratio
N !

n!(N − n)!
is an integer so

N !

n!
is an integer that is

divisible by (N − n)!. Combining this with N − n ≥ p yields the stronger than
announced result that for each t, Mp(t) is divisible by p!. However, from our
choice of the polynomial P (z) which led to our intermediate terms, we see that
Ip(0) = (p− 1)!cp−1, which is clearly divisible by (p− 1)!, thus establishing the
first part of the claim.

The second part of the claim follows from the observation that cp−1 6= 0, it
equals (−1)d(d!)p, and therefore, if we take p > d it will not divide cp−1. Thus
we have

Ip(0)

(p− 1)!
≡ cp−1 mod p and for each t

Mp(t)

(p− 1)!
≡ 0 mod p,

With the above claim in hand it is possible to conclude the proof that e is
transcendental.

If we divide the inequality (9) by (p− 1)! we have the inequality

0 <

∣∣∣∣∣ r0
(p− 1)!

Ip(0) +

d∑
t=0

rt
(p− 1)!

Mp(t)

∣∣∣∣∣ ≤ c1
(

d∑
t=1

|rt|

)
(c2)p

(p− 1)! ,
. (10)
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Letting p approach infinity leads to a contradiction, thus establishing the tran-
scendence of e.

As we mentioned in Chapter 1, the above proof is more allied with the one
given by Hurwitz in 1893 that with Hermite’s original proof. Yet Hermite’s
proof of 1873 did inspire Lindemann, who just under a decade later established
the important theorem:

Lindemann(1882) π is transcendental.

Lindemann actually proved a more general result that is now widely known
as the Hermite-Lindemann Theorem.

Theorem (The Hermite-Lindemann Theorem). If α is a nonzero alge-
braic number then eα is transcendental.

Note that the transcendence of π follows: if π is algebraic then so is iπ.
Thus it should follow that eiπ = −1 is transcendental, which is clearly is not.

Sketch of proof of the Hermite-Lindemann Theorem. Suppose α is a nonzero
algebraic number and eα is algebraic and satisfies an integral polynomial equa-
tion:

r0 + r1e
α + r2e

2α + · · ·+ rde
dα = 0, rd 6= 0.

Using the series representation we obtain:

(d+1)p−1∑
N=p

N !cNe
αz =

(d+1)p−1∑
N=p

(
N !cN

N−p∑
n=0

(αz)n

n!

)
︸ ︷︷ ︸

main term (Mp(αz))

+

(d+1)p−1∑
N=p−1

N !cN

N−1∑
n=N−p+1

(αz)n

n!


︸ ︷︷ ︸

intermediate term (Ip(αz))

+

(d+1)p−1∑
N=p−1

(
N !cN

∞∑
n=N

(αz)n

n!

)
︸ ︷︷ ︸

tail (Tp(αz))

, (11)

where the coefficients cN are chosen so that the intermediate term, Ip(αz),
vanishes at z = 1, 2, . . . , d.

Therefore we have for each t, 1 ≤ t ≤ d,

etα
(d+1)p−1∑
N=p

N !cN = Mp(tα) + Tp(tα),

while

e0
(d+1)p−1∑
N=p

N !cN = Mp(0) + Ip(0).
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This leads to∣∣r0(Mp(0) + Ip(0)
)

+ r1
(
Mp(α)

)
+ r2

(
Mp(2α)

)
+ · · ·+ rd

(
Mp(dα)

)∣∣︸ ︷︷ ︸
term that should lead to a nonzero integer

≤
∣∣∣r1(Tp(α)

)
+ r2

(
Tp(2α)

)
+ · · ·+ rd

(
Tp(dα)

)∣∣∣︸ ︷︷ ︸
expression that should be small for p large

.

If we could somehow obtain an inequality of roughly the above form, and
show the left-hand side is nonzero, we would still need to move from an inequality

0 < | algebraic number | ≤ a small, positive quantity.

to an inequality

0 < |nonzero integer | ≤ a small, positive quantity

How to, in general, obtain a rational integer from an algebraic number, is
perhaps the only new idea Lindemann had to introduce. We will come back to
this outline of the proof of what is often called the Hermite-Lindemann Theorem
after we investigate this point.

Algebraic Digression: Obtaining an integer from an algebraic num-
ber

Suppose that α is the zero of an irreducible, integral polynomial Pα(x) =
adx

d + ad−1x
d−1 + · · · + a0 with ad 6= 0. If we denote the d zeros of P (x) by

α1(= α), α2, . . . , αd then we have the factorization:

P (x) = ad
∏

k=1,...,d

(
x− αk

)
.

The algebraic numbers α2, . . . , αd are called the conjugates of α and the algebraic
norm of α, defined by the product

Norm(α) =
∏

k=1,...,d

αk

is equal to the ratio (a0)/(ad). Thus for any nonzero algebraic number α,Norm(α)
is a rational number.

In the particular case that the minimal integral polynomial of α is monic, so
that its leading coefficient equals 1 (in which case α is said to be an algebraic
integer), we see that Norm(α) is a nonzero integer (namely the constant term
of α′s minimal, integral polynomial).

It is elementary, and central to transcendence theory, that for any algebraic
number α there exists a rational integer δ so that δα is an algebraic integer. Any
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such δ is said to be a denominator for α and if the minimal, integral polynomial
for α is the polynomial P (x), as above, then adα is an algebraic integer. (It is
a zero of the polynomial Q(x) = xd + ad−1x

d−1 + adad−2x
d−2 + · · · + ad−1d a0

since Q(adα) = ad−1d P (α) = 0.)

The Hermite-Lindemann’s Theorem’s proof (continued).

Assuming eα is algebraic it is possible to obtain an inequality:

0 < | algebraic number | ≤ a small, positive quantity.

If we then multiply through by the denominator of the algebraic number in
the above inequality we get:

0 < | denominator of the algebraic number× algebraic number |
≤ | denominator of the algebraic number| × a small, positive quantity.

Assuming we have a reasonable estimate for the absolute value of the denomi-
nator we have just multiplied by we then have

0 < | nonzero algebraic integer| < a different, small, positive quantity.

Taking the algebraic norm of the nonzero algebraic integer and estimating
the small, positive quantity we are led, hopefully, to an inequality:

0 < |nonzero integer| < 1.

This final contradiction shows that our assumption that eα is algebraic can-
not hold, thus establishing the Hermite-Lindemann Theorem.

The proof of the Lindemann-Weierstrass also uses this approach, where the
use of the conjugates of the assumed algebraic values is a bit more elaborate
(and subtle). We omit any of these details but refer the interested reader to
[Bu-Tu].

Exercises.

1. Let

P (z) = zp−1(z − 1)p · · · (z − d)p = cp−1z
p−1 + cpz

p + · · ·+ c(d+1)p−1z
(d+1)p−1.

Verify that the sum of P s 1st through (p− 1)st derivatives equals the sum:

p−1∑
n=1

P (n)(z) =

(d+1)p−1∑
N=p−1

N !cN

N−1∑
n=N−p+1

zn

n!

 .
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2. Verify that the coefficients of P in problem 1, cp−1, . . . , c(d+1)p−1, satisfy

max{|cp−1|, . . . , |c(d+1)p−1|} ≤ (2d)dp.

3. Recall that for t = 1, 2, . . . , d,

Tp(t) =

(d+1)p−1∑
N=p−1

(
N !cN

∞∑
n=N

tn

n!

)
;

Verify that for each of these values of t,

|Tp(t)| ≤ edd(d+2)p−1 ((2d)d
)p

= c1 (c2)p

where c1 = ed/d and c2 = d2
(
2d2
)d
.

4. a) Show that 3
√

2 is an algebraic number and find its norm. Do the same
for i+ 3

√
2.

b) Find the algebraic norm for each of the zeros of the polynomial P (X) =
2X4 +X − 8. Does your calculation imply that any of these zeros are algebraic
integers?

c) Suppose α is an algebraic number whose algebraic norm is a rational
integer. Does it follow that α is an algebraic integer?
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